A new form of governing equations of fluids arising from Hamilton's principle

نویسنده

  • S. Gavrilyuk
چکیده

A new form of governing equations is derived from Hamilton’s principle of least action for a constrained Lagrangian, depending on conserved quantities and their derivatives with respect to the time-space. This form yields conservation laws both for non-dispersive case (Lagrangian depends only on conserved quantities) and dispersive case (Lagrangian depends also on their derivatives). For non-dispersive case the set of conservation laws allows to rewrite the governing equations in the symmetric form of Godunov-Friedrichs-Lax. The linear stability of equilibrium states for potential motions is also studied. In particular, the dispersion relation is obtained in terms of Hermitian matrices both for non-dispersive and dispersive case. Some new results are extended to the two-fluid non-dispersive case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Vibration and Buckling Analysis of Sandwich Panels with Flexible Cores Using an Improved Higher Order Theory

In this paper, the behavior of free vibrations and buckling of the sandwich panel with a flexible core was investigated using a new improved ‎high-order sandwich panel theory. In this theory, equations of motion were formulated based on shear stresses in the core. First-order shear deformation theory was ‎applied for the procedures. In this theory, for the first time, incompatibility problem of...

متن کامل

Generalized Differential Quadrature Method for Vibration Analysis of Cantilever Trapezoidal FG Thick Plate

This paper presents a numerical solution for vibration analysis of a cantilever trapezoidal thick plate. The material of the plate is considered to be graded through the thickness from a metal surface to a ceramic one according to a power law function. Kinetic and strain energies are derived based on the Reissner-Mindlin theory for thick plates and using Hamilton's principle, the governing equa...

متن کامل

A New Approach for Solving Heat and Mass Transfer Equations of Viscoelastic Nanofluids using Artificial Optimization Method

The behavior of many types of fluids can be simulated using differential equations. There are many approaches to solve differential equations, including analytical and numerical methods. However, solving an ill-posed high-order differential equation is still a major challenge. Generally, the governing differential equations of a viscoelastic nanofluid are ill-posed; hence, their solution is a c...

متن کامل

Analytical Solutions of the FG Thick Plates with In-Plane Stiffness Variation and Porous Substances Using Higher Order Shear Deformation Theory

This paper presents the governing equations on the rectangular plate with the variation of material stiffness through their thick using higher order shear deformation theory (HSDT). The governing equations are obtained by using Hamilton's principle with regard to variation of Young's modulus in through their thick with regard sinusoidal variation of the displacement field across the thickness. ...

متن کامل

Nonlinear Vibration Analysis of the Composite Cable using Perturbation Method and the Green-Lagrangian Nonlinear Strain

In this study, nonlinear vibration of a composite cable is investigated by considering nonlinear stress-strain relations. The composite cable is composed of an aluminum wire as reinforcement and a rubber coating as matrix. The nonlinear governing equations of motion are derived about to an initial curve and based on the fundamentals of continuum mechanics and the nonlinear Green-Lagrangian stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008